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Abstract. The low value of (TNI − T ?)/TNI , where TNI is the nematic–isotropic phase
transition temperature andT ? denotes the virtual transition temperature, is a long-standing puzzle
in the physics of liquid crystals. The present review presents experimental and theoretical results
on this long-standing problem. New experimental and theoretical results for the critical behaviour
in the isotropic phase of nematogens are reviewed. We calculate in a unified approach the low
value of (TNI − T ?)/TNI , at both critical and tricritical points. The possibility of tricritical
behaviour at the nematic–isotropic transition is also discussed by means of Landau theory. The
various predictions are compared with the available experimental results.
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1. Introduction

Liquid crystals (LC) are among the most interesting condensed states of matter; they are
interesting in their own right and we also expect that insights into their properties will help
us to understand other condensed phases that exist in nature. A unique feature of LC is that
they are soft systems on a macroscopic scale. Another unique feature of LC is that they
provide qualitative solutions to complicated—often unsolvable—equations on a large scale
that can be observed using a polarizing microscope. In all LC phases there are thermally
excited fluctuations. Depending on the spatial dimensionality along with the symmetry and
range of interparticle interactions, these fluctuations can play roles of varying significance
in determining the properties of matter. The fluctuations also profoundly alter the character
of the LC material properties in the vicinity of phase transitions. Sometimes the fluctuations
are so important as to prevent the establishing of phases which the interactions between the
molecules would otherwise favour.
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The most studied phase transition in liquid crystals is the nematic–isotropic (NI) phase
transition. Since research on the NI phase transition has been continuous over the past
few decades (de Gennes and Prost 1993, Gray 1976, Chandrasekhar 1992, de Jeu 1980,
Priestly et al 1975, Vertogen and de Jeu 1988, Anisimov 1991), it is surprising that there
are still no clear answers to some key questions concerning the nature of this phenomenon.
Early theories include the phenomenological model of de Gennes (1969, 1971) and the
Hamiltonian approach of Maier and Saupe (1958). Yet, despite these and many subsequent
efforts, there remain a series of fascinating problems associated with the NI transition that are
not completely resolved. First of all, it is not quite clear what makes this transition so weakly
first order. The low value of(TNI − T ?)/TNI , whereTNI is the nematic–isotropic phase
transition temperature andT ? denotes the virtual transition temperature, is a long-standing
puzzle in the physics of liquid crystals, despite numerous theories having been advanced.
The very nature of the critical behaviour is not properly understood. Fluctuations have long
been known to be an important feature of the NI transition, but so far relatively little is
known about the fluctuation phenomena (critical phenomena) near the NI transition. The
specific heat capacity of the NI transition is also contradictory. In order to gain insight into
these problems, several workers (Anisimovet al 1977, 1979, Shihet al 1976, Gohinet al
1983, Fan and Stephen 1970, Stinson and Litster 1970a, b, Priest 1974, 1978, Keyes 1978,
Keyes and Shane 1979, Poggiet al 1976a, b, c) showed how inclusion of fluctuations can
yield considerable improvement. This was done by means of the special inhomogeneity in
the order parameter in the Landau–de Gennes (LdeG) theory. Naturally such discrepancies
raise many questions regarding our understanding of the NI transition.

The properties of the NI phase transition have attracted considerable attention recently
both theoretically (Averyanov 1990, Mukherjee 1996a, b, 1997a, b, 1998a, b, c, d, e,
Mukherjeeet al 1994, 1995, Mukherjee and Mukherjee 1995, Mukherjee and Saha 1995,
Nandiet al 1996, Mukhopadhyay and Mukherjee 1997, Sengupta and Fayer 1995, Taoet al
1993, Zhanget al 1992, 1993, Wang and Keyes 1996) and experimentally (Rzoska 1998,
Rzoskaet al 1996a, b, 1997, Lelideset al 1993, Rjumtsevet al 1995). In this review
we shall present a summary of the current theoretical and experimental understanding of
the NI transition. There are numbers of excellent reviews (Anisimov 1988, Gramsbergen
et al 1986, Stephen and Straley 1974) on the NI transition. But our intention in giving this
review is to focus just on theTNI − T ? problem and also criticality near the NI transition.

In section 2 we review the previous and current experimental data available. In section 3
we review theTNI − T ? calculation of the NI transition on the basis of Landau–de Gennes
theory. In this section we try to describe most of the current theoretical approaches to the
study of theTNI − T ? problem and critical properties of the NI phase transition. In some
cases considerable detail is presented, while in other cases just a basic outline is given. In
section 4 we discuss theTNI − T ? calculation on the basis of renormalization-group (RG)
theory. We apologize in advance to any workers in this field of research to whose work
we did not give references. In section 5 we summarize our current understanding of this
subject.

2. Review of experimental data: critical properties

The experimental determination of the critical-like behaviour of the NI phase transition
requires extensive studies of light scattering (Stinson and Litster 1970a, b, 1973), the Kerr
effect (Rjumtsevet al 1995), the Cotton–Mouton effect and the non-linear dielectric effect
(Rzoska and Zio lo 1994, Rzoskaet al 1996a, b, 1997, Rzoska 1998). All such studies
exhibit the same classical pretransitional anomaly in the isotropic phase of nematogens.
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A salient feature of nematic liquid crystals (NLC) is that they have generic long-range
correlations even far from critical points or hydrodynamic instabilities (Dorfmanet al 1994)
that could make it difficult to access the critical regimes before being finessed by a first-
order phase transition. Due to the first-order nature of the NI phase transition, the part of
the critical region closest to the critical point is not accessible to experiment. Therefore the
critical exponents, being defined in this very region, cannot be determined without the use
of some extrapolation. Poggiet al (1976a, b, c) for example obtained a critical exponent
β = 1/2 (classical) for the order parameter versus temperature in methoxybenzylidene
butylaniline (MBBA). Keyes, however, has shown (Keyes 1978) thatβ = 1/4 (tricritical)
can also fit the data quite well, in demonstrating the potential ambiguity in obtaining the
critical exponents at a first-order transition. Others have also found tricritical-like exponents
(Frenkel and Eppenga 1982), although their measurements are by no means unambiguous.
Keyes and Shane (1979) suggested that the critical exponents for quantities diverging toward
temperatureT ?, before being cut off by a first-order transition atTNI , should be the
identifying characteristic of a tricritical point. The difference between critical and tricritical
behaviour of the NI transition is difficult to verify. The main reason to suspect tricritical
behaviour is the value ofβ. For the exponentβ, a best value of

β = 0.247± 0.01

was obtained for 8CB. This value strongly supports the suggestion of tricritical character
of the NI phase transition. On the other hand, high-precision measurements of the specific
heat near the NI phase transition of MBBA show that the behaviour of this transition
is near tricritical and does not appear to agree with the LdeG model. The results of early
investigations (Mayeret al 1972, Soraiet al 1974, Anisimovet al 1979) of the heat capacity
anomaly near the NI transition were so contradictory that sometimes they did not allow even
a qualitative interpretation. Anisimovet al (1977) measured the temperature dependence
of the specific heat for MBBA near the NI transition. The analysis of the temperature
dependence of the specific heat showed that the fluctuations of the order parameter are not
small at the phase transition point. Concerning the specific heat phenomena, Anisimovet al
(1977, 1979) gave a strong argument in favour of the tricritical hypothesis, fitting their data
from very precise specific heat measurements on MBBA and other compounds.

Recently Rzoskaet al (1996a, b) discussed the critical behaviour of the dielectric
permittivity in the isotropic phase of nematogens. They showed that the dielectric permit-
tivity towards the NI phase transition follows the same pattern as in critical binary solutions.
They obtained the critical exponent

φ = 0.5± 0.03

of the dielectric permittivity versus temperature for HCPP. This value suggests fluid-like
critical behaviour ford = 3 of the NI phase transition. Their analysis gives an adequate
description of the pretransitional behaviour of dielectric permittivity in the isotropic phase
of nematogens. Again, the experimental investigation (Rzoskaet al 1997) of high-pressure
studies of MBBA also shows pretransitional effects of the NI transition. Furthermore, their
studies on the pressure dependence of the clearing temperature and the low-frequency non-
linear dielectric effect in the isotropic phase of MBBA strongly support the above theoretical
analysis. Their experimental results show the close relationship between the pretransitional
behaviour in the isotropic phase of nematogens and that in the homogeneous phase of
critical solutions. Therefore the study of the pretransition (fluctuation) phenomena near the
first-order phase transitions can reveal the physical reasons for their closeness to the second
order.
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3. TNI − T ? calculation from the Landau–de Gennes theory

3.1. The nematic order parameter

The identification of the appropriate order parameter (OP) for NLC is aided by a
consideration of the observed structure and symmetry of the phase. An ordinary isotropic
liquid has full rotational and translational symmetry. The centres and orientations of the
molecules are randomly distributed. The corresponding symmetry group is S= R33O(3),
which represents the semi-direct product of the group R3 of continuous translations in 3D
space with the full orthogonal group, i.e. the invariance group of the sphere which contains
the three-dimensional rotational group SO(3) and its multiplication by the inversion 1. In the
simplest structure the group O(3) is replaced by one of the uniaxial symmetry groups D∞h.
Thus the uniaxial nematic phase has the symmetry S= R33D∞h. In NLC the molecules
are, on average, aligned with their long axes parallel. Macroscopically, a preferred direction
is thus defined. It is assumed (de Gennes and Prost 1993) that the corresponding primary
OP has the symmetry of a second-rank traceless tensor (Indenbom and Loginov 1981), the
components of which can be written as follows:

Qij (r) = li lj − 1

3
(li lk)δij = Q(r)

[
ni(r)nj (r)− 1

3
δij

]
. (1)

It represents local averages of bilinear combinations formed by projections of the unit vector
l of the long molecular axis, or analogous combinations of the director componentsn̂i which
determine the local orientation of the molecules. The quantityQ(r) defines the fraction of
molecular axes pointing alonĝn at a given point.Q = 〈3cos2(θ)− 1〉/2, whereθ is the
angle made by the long molecular axis withn̂ and the brackets〈· · ·〉 denote the ensemble
average. Thus in the isotropic phaseQ(r) = 0, and in the nematic phaseQ(r) 6= 0. Let
us note that equation (1) applies only for molecular subunits with symmetry D∞h or D∞,
i.e. in which the two directionŝn and−n̂ are equivalent.

3.2. Density effects at the NI phase transition

The phase transition from isotropic liquid to nematic liquid crystals is a weak first-order
one. As a rule, it is characterized by a small latent heat and by large pretransitional
anomalies over a relatively wide temperature region, similar to those observed near a second-
order transition. Light scattering and magnetic birefringence measurements in the isotropic
phase of nematogens indicate strong pretransitional effects. The weakness of the first-order
character of the NI transition is characterized by the low value of(TNI − T ?)/TNI ∼ 0.1%
(Shih et al 1976, Fan and Stephen 1970, Stinson and Litster 1970a, b, 1973); hereTNI
is the NI transition temperature andT ? denotes the virtual transition temperature or the
supercooling temperature. The most successful theory of the NI phase transition is the LdeG
theory. On the lower-temperature side, the LdeG theory of phase transitions can explain the
abnormal change well, but the upper-temperature side does not yield any abnormality in the
thermodynamic derivatives (Maier and Saupe 1958, 1959, 1960, Alben 1970). The statistical
continuum theory of de Gennes has succeeded in explaining many experiments, e.g. ones
based on light scattering (Stinson and Litster 1970a, b), shear-wave attenuation (Martinoty
et al 1971), 14N nuclear magnetic relaxation (Cabane and Clark 1970), anomalous heat
capacities (Imura and Okano 1972, Mukherjee 1998c), turbidity (Linet al 1980) and the
non-linear dielectric effect (Rzoska and Zio lo 1994, Rzoskaet al 1996a, b).

For purely geometrical reasons, the NI transition is first order, as was recognized by
Landau. The LdeG model containing a cubic term in the order parameter in the free-
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energy expansion was proposed (de Gennes 1969, 1971) and used to describe the first-order
transition in LC. We start from the expansion of the LdeG free-energy density in powers of
the tensor order parameterQij :

F − F0 = 3

4
AQijQij − 3

2
BQijQjkQki + 9

16
C(QijQij )

2 (2)

which contains a cubic invariant, as the states with parametersQij and −Qij are
energetically non-equivalent. HereF0 is the free-energy density of the isotropic phase.
The coefficientA is assumed to have the formA = a(T − T ?). Here a, B andC are
positive constants andT ? is a temperature close to the transition temperatureTNI .

For a uniform uniaxial LC, substituting in equation (1) leads to the free-energy expansion

F = F0+ 1

2
AQ2− 1

3
BQ3+ 1

4
CQ4. (3)

The presence of the cubic term in equation (3), which does not disappear at the NI transition
point, leads to the fact that the jump in entropy is small and the transition is close to a
transition of the second kind(B = 0). The constantC also turns out to be unexpectedly
small. This weakness of the NI transition can be characterized numerically by the parameter
δ = (TNI − T ?)/TNI . If B were absent,T ? would be the MF (mean-field) second-order
transition temperature. But since in our modelB > 0, T ? is the temperature of the absolute
stability limit of the isotropic phase.

de Gennes and Prost (1993) have pointed out how MS theory implies that(TNI −
T ?)/TNI ) ≈ 8.0% from the model (3). The difference(Q? −QNI )/QNI is experimentally
found to be of the order of a few per cent instead of 50% as predicted theoretically
(Anisimov 1991). In order to gain insight into this problem, several workers showed how
the inclusion of fluctuations can yield considerable improvement. This was done by means
of the special inhomogeneity in the order parameter in LdeG theory. These calculations
include Gaussian fluctuation only. To include higher-order fluctuation, Priest (1978) carried
out a RG calculation to show thatTNI −T ? = 12.8 K. Zhanget al (1992, 1993) studied the
nature of the orientational phase transition in the 3D Lebwohl–Lasher model of LC by means
of computer simulation. They obtained an impressive value of(TNI −T ?)/TNI . Again, Tao
et al (1993) argued that, since fluctuation effects are higher-order effects, a correction for
the MF calculation should be considered first. They included a density-dependent term in
the pseudopotential and have shown how just one adjustable parameter can give consistent
results for(TNI − T ?)/TNI and also for the specific volume change atTNI . In support of
their contention, they have shown how some other thermodynamic results (namely values
of dTNI /dP and d(ln TNI )/d(lnV )) could be reasonably well reproduced using the already
adjusted value of the aforementioned parameter. In some recent work (Mukherjeeet al
1995, Nandiet al 1996, Mukhopadhyay and Mukherjee 1997) it has been shown how a
density-dependent term in the LdeG free-energy expansion (3) gives consistent results for
TNI − T ? andQ? −QNI as compared to the experimental findings.

In order to reveal the density effect at the NI transition, the free-energy density (3) can
be written (Mukhopadhyay and Mukherjee 1997) as

F?(ρ,Q, T ) = 1

2
A?Q2− 1

3
B?Q3+ 1

4
C?Q4+ 1

2
Eρ2+ λ1ρQ

2+ λ2ρQ
3. (4)

The termEρ2 is the free-energy density of the isotropic phase. The coefficientsλ1 and
λ2 are coupling constants. A minimization of the free energy results in the following
renormalization (Mukhopadhyay and Mukherjee 1997) of the expansion coefficients:

A = A? + 2λ1M

E
(5)
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B = B? − 3λ2M

E
(6)

C = C? − 2λ2
1

E
. (7)

Thus the coupling of the scalar parametersQ and ρ leads to the renormalization of the
constantsA, B andC. HereM is the quantity thermodynamically conjugate to the density
ρ. It is seen from equations (5) and (6) that accounting for the interaction betweenQ and
ρ leads to a decrease ofB and an increase ofT ?. Thus the influence of density may be
another factor leading to renormalization of the LdeG expansion coefficients. The shift of
the transition temperature becomes

TNI = T ? − 2λ1ρ

a1
. (8)

Thus the coupling constantλ1 determines the shift of the transition temperature (8) and can
be found easily from experiment:

λ1 = −a1

2

dTNI
dρ

. (9)

What transpires from the above analysis is that not only the director fluctuation, but also the
density effect plays an important role in the weakly first-order NI transition. The density
fluctuation alters the character of the NI transition and makes it very weakly first order.

In the presence of density, the modified form of the temperatureT ? in equation (3) can
be expressed as

T ?(ρ) = T ?0 + α1(ρ − ρ0)+ α2(ρ − ρ0)
2. (10)

Here α1 and α2 are positive constants andρ0 is the equilibrium density without order
parameter–density coupling.T ?0 is the MF absolute stability limit of the isotropic phase in
the absence of any density–order parameter coupling. In this case the free energy (3) takes
the form

F(ρ,Q, T ) = F0(ρ)+ a
2
(T − T ?0 )Q2− B

3
Q3+ C

4
Q4

+ η1

2
(ρ − ρ0)Q

2+ η2

2
(ρ − ρ0)

2Q2. (11)

The transition temperatureTNI and the value ofQ? (at T = T ?) are calculated as

TNI = T ?0 +
2B2

9aC
− η1(ρ

t
N − ρtI )
a

− η2(ρ
t
N − ρtI )2
a

(12)

Q? = B

2C

[
1+ (1− 4η1C

B2
(ρ − ρ0)− 4η2C

B2
(ρ − ρ0)

2

]1/2

(13)

whereρtI andρtN are the nematic and isotropic densities atTNI . It was shown (Mukherjee
et al 1995) that with the Landau expansion parameters fixed, utilizing some experimental
data, the calculated values of dTNI /dP (=41.50 K kbar−1) and d(ln TNI )/d(lnV )
(=−0.3964) tally well with the experimental results (20–40 K kbar−1 and−0.3964) and
also with a low value ofTNI −T ? = 0.9998 K. However,Q?−QNI , instead of being very
close (within approximately 2% experimentally), remains about 50% of the value obtained
in the LdeG theory without incorporating any effect of density variation. ThisQ? −QNI

discrepancy implies that the change in the value of the calculated order parameter over a
small temperature interval of 1 K (as TNI − T ? = 1 K) would be much higher than that
observed in experiments. In fact, the value of 0.3998 of(dQ/dT )T=TNI that we obtain is at
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variance with the observed value of 0.008. Thus the pressure dependence shows strongly
pretransitional effects at the NI transition. This clearly shows that a complete resolution of
the TNI − T ? puzzle remains outside the realm of simple MF analysis where fluctuations
are not taken into consideration. These results support the molecular MF results of Tao
et al (1993) and also bring out the inadequacy as regards explaining the small value of
(Q? −QNI )/QNI and(dQ/dT )T=TNI in the LdeG framework.

As can be seen from equations (5) and (7), as the temperature decreases andρ increases,
the quantity∂M/∂ρ decreases and the coefficientC tends to zero, i.e. a tricritical point (TCP)
appears. On further variation of the temperature and density, the coefficient changes sign.
In general, when two coefficients of the same symmetry in the Landau free energy vanish
simultaneously, such a point is called tricritical. Since the coefficientsC andA have the
same symmetry,C = A = 0 gives a TCP. As we have to consider a situation withC = 0,
a stabilizing sixth-order term is added withE � 0. The alternative free-energy expression
is thus

F = A

2
Q2− B

3
Q3+ C

4
Q4+ E

6
Q6. (14)

With expression (14), one can have a TCP forB = 0, C = 0. One way of studying the
weakly first-order NI transition occurring near a TCP would be to haveB take a small
non-zero value. Then the free-energy expression (14) would take the form (Gramsbergen
et al 1986, Mukherjee 1997a, Mukherjeeet al 1994, Mukhopadhyay and Mukherjee 1997)

F = A

2
Q2− B

3
Q3+ E

6
Q6. (15)

The calculated value ofTNI − T ? obtained from the scaling equation of state (Mukherjee
1997a) of the model (15) is 7.68 K (without density variation). The model (15) also
gives the value(Q? − QNI )/QNI ≈ 26%, which shows an improvement of 50%
over the previous model (3). These results are quite encouraging, but the value of
(Q? − QNI )/QNI leaves ample scope for improvement. Again taking into account the
density variation (Mukhopadhyay and Mukherjee 1997) in the model (15), one obtains
TNI − T ? ≈ 0.9999 K, but the value of(Q? −QNI )/QNI ≈ 26% is hardly any improve-
ment. However, we can present yet another approach for studying the NI transition occurring
near a TCP. We can do this by takingB = 0 in equation (14). The first-order nature of the
NI transition and the neighbourhood of the TCP can both be achieved if we take a small
negative value ofC. It should be mentioned that by takingB = 0 we do not mean to
imply that the cubic term is to be altogether discarded in the free-energy expression for the
nematic phase. This only implies that as the critical point is approached, the already small
entity becomes even smaller, and so can be neglected. This only points to the inadequacy
in the Landau scheme of keeping all of the coefficients, exceptA, constant. In this case the
free-energy density in the vicinity of TCP takes (Mukherjee 1998d) the following form:

F = A

2
Q2− C

4
Q4+ E

6
Q6. (16)

The value ofTNI − T ? calculated from the scaling equation of state is 2.55 K. The model
(16) gives the value(Q? −QNI )/QNI ≈ 15.47%, which shows an improvement of 70%
over the previous results. However, the low value ofTNI − T ? with the high value of
Q?−QNI or an equivalent high value of(dQ/dT )T=TNI seems to be glaringly inconsistent,
which supports the molecular MF results.
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Figure 1. A typical temperature (T ) versus concentration (x) diagram for a low solute mole
fraction.

3.3. The influence of non-mesogenic impurities on the NI phase transition

Generally, all real nematics contain impurities. It is well known that solute impurities
which are not sufficiently rod-like and rigid in molecular structure depress the NI transition
temperature. Hence, the addition of non-mesogenic impurities to a pure nematic leads to a
broadening of the NI transition temperature and the appearance of a two-phase region (see
figure 1). It was shown (Luckhurst and Gray 1979, Mukherjee 1997b) that this two-phase
region indicates the first-order character of the NI transition. The depression of the NI
transition temperature is connected with the width of the two-phase region and the entropy
of the transition (Mukherjee 1997b):

TNI − T 0
NI =

1x

1SNI
(17)

where1x and1SNI are the width of the two-phase region and the entropy of the pure
nematic solvent. Hence for1SNI 6= 0, a two-phase region must exist at a fixed temperature.
For a second-order transition,1SNI = 0, i.e. the two-phase region disappears. The form of
the two-phase region (see figure 1) is determined by two factors:

(1) anomalously small values of the coefficientsB andC in expansion (14);
(2) non-ideality of the mixture.

The smallness ofB means that the transition is close to being second order. In the case
whereB = 0, non-ideality of the solution may lead to the appearance of a TCP due to the
coupling between the order parameter and the concentration. If the transition in a mesogenic
solvent is very near to a TCP (C � 1), the phase diagram for a dilute solution has the form
presented in figure 2. Hence from the above analysis it is clear that there is a possibility of
tricritical behaviour in the presence of impurities at the NI transition.

3.4. Critical behaviour near the NI phase transition

The influence of electric and magnetic fields has been investigated extensively by many
authors both theoretically (de Gennes 1969, Priestlyet al 1975, Poggiet al 1976a, b,
c, Dunmur and Tomes 1981, Palffy-Muhoray and Dunmur 1982, 1983, Savithramma and
Madhusudana 1983) and experimentally (Nicastro and Keyes 1984, Helfrich 1970, Fan
and Stephen 1970, Rosenblatt 1981, 1982, 1983). When there are no external magnetic
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Figure 2. The phase diagram of a dilute solution in the case of tricritical behaviour of the pure
solvent.

or electric fields, the nematic and isotropic liquid do not have the same symmetry. The
character of the NI phase transition can be changed by applying an electric or magnetic
field. The effect of an applied field is to induce orientational order in the isotropic phase
that grows with increasing field intensity. For the case of positive dielectric anisotropy,
the first-order phase boundary in the temperature–applied-field plane terminates in a field-
induced critical point. This phase digram is thus analogous to that of a liquid–gas system in
the temperature–pressure plane. The first experimental evidence of an electrically induced
critical point was given by Nicastro and Keyes (1984).

The physical consequences of the LdeG theory will now be investigated for the case
where an external field is induced. The LdeG free energy in the presence of an external
magnetic field is obtained (de Gennes 1969, 1971) from

F = F0+ A
2
Q2− B

3
Q3+ C

4
Q4+D(∇Q)2−HQ. (18)

The value ofQ in the para-nematic phase is small and therefore can be obtained
(Gramsbergenet al 1986) from equation (18) while disregarding the terms containingB

andC (∇Q = 0):

Q(H) = H/a(T − T ?). (19)

The jump of the order parameter at the NI phase transition is directly related to the value
of the field. It decreases with the increasing field until the critical fieldHC is reached
where there is no longer any jump. At this point, the transition becomes second order. For
fields higher thanHC , there is no phase transition and the nematic and para-nematic phases
are indistinguishable. The location of the critical point is given (Gramsbergenet al 1986,
Mukherjee 1996a, b) by(∇Q = 0)

HC = B3

27C2
(20)

TC = T ? + B2

3aC
(21)

QC = B

3C
. (22)
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Near the critical point we find (Mukherjee 1996a, b)

1Tcritical ' 1

128π2

(
k2
BT

2
NIC

2

aD3

)
. (23)

In order to findTNI outside this critical region, the following inequality has to be fulfilled:

TC − TNI > 1Tcritical (24)

or

D3 >
9

128π2

(
k2
BT

2
NIC

3

aB2

)
. (25)

SinceB varies strongly withT , andP may be zero, this inequality can be obeyed only
if B is greater thanB1, which is the value ofB for which (23) is an equality. Thus if
B2 < B2

1, we may observe a critical region atH = 0. Hence near an isolated critical point
on the NI transition line, we find a critical region atH = 0 if the first-order transition is
near enough to the isolated critical point. If the transition point is remote enough, we have
a critical region ifH 6= 0. We also see (Mukherjee and Mukherjee 1995) that a model (2)
with a tensorial order parameter, which has aBQ3-interaction in addition toCQ4, has a
critical valueB = BC(C,3) below which there is no transition. At the critical value, the
system undergoes a second-order transition with no symmetry breaking. Above the critical
value ofB, the transition is of first order. This is contrary to the prediction of Landau’s
theory. This result holds also ford > 4, since it depends only on the fact thatAC = 0.
Thus if atTNI the behaviour is critical, assuming that in the scaling law the non-analyticity
appears at the critical point (the fluid-like critical point) and also on the spinodal curve, the
critical indices of the absolute stability limit of the nematic phase (metastable) areβ1 = β
andα1 = γ1 = 1− β1. Thus we see that there is a possibility of critical behaviour with
d = 3 for the NI phase transition. This argument nicely agrees with recent experimental
observations (Rzoskaet al 1996a, Rzoska 1998).

Figure 3. The specific heat capacity (CP ) versus temperature (T ) for MBBA. The solid line
shows theoretical data and the open circle shows the experimental data.
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The anomalous parts of the specific heat capacity of NLC above the transition point
were discussed by Imura and Okano (1972) and Mukherjee (1998c) on the basis of the
continuum theory of de Gennes. The excess specific heat capacity at constant pressure (per
volume) due to fluctuation is given (Mukherjee 1998c) by

1CP (T ) = 2.54× 10−4T 2[T − 318.7]−1/2 J mol−1 K−1. (26)

The experimental and theoretical heat capacities are displayed in figure 3. For the case of
MBBA the experimental points of Anisimovet al (1977) are found to be well reproduced
by the empirical formula (26). The amplitude of the order parameter fluctuation increases
abnormally nearTNI and it brings about anomalous increments in the heat capacity. This
may be caused by either a very weak first-order character of this transition which is
driven by the fluctuations of the nearby NI transition or, more probably, a macroscopically
inhomogeneous distribution of impurities. This analysis clearly indicates the pretransitional
phenomena of NLC. This pretransitional phenomena indicate that the NI transition is close
to being second order.

4. TNI − T ? calculation from renormalization-group theory

The fluctuations near NI phase transitions were studied by several authors (Nelson and
Pelcovits 1977, Mukherjeeet al 1994, Mukherjee and Saha 1995, 1997, Mukherjee 1998b,
Mukherjee and Mukherjee 1995, Priest and Lubensky 1976, Priest 1978, Sluckin and Shukla
1983, Trimper 1987, Vigmanet al 1976) using the RG technique.

In the nematic phase the ‘director’ fluctuations are critical. Nelson and Pelcovits (1977)
pointed out that strongly developed director fluctuations could alter the character of the NI
transition and make it very weakly first order. Recently, Wang and Keyes (1996) calculated
the fluctuations of all five components of the orientational order parameter of a NLC in a
wide variety of circumstances, involving several types of critical and multicritical points.
Vigman et al (1976) applied the RG approach to the description of fluctuation behaviour
near the isolated critical point on the NI transition line. At this point the cubic invariant in
the effective Hamiltonian is equal to zero. With quadratic (A) and cubic (B) variables (in
the laboratory one could adjust the temperature and pressure, of whichA andB are smooth
functions) we would get a first-order transition except at an isolated critical point where
A = B = 0, where the jump in the order parameter vanishes. Several workers investigated
the Landau point with fluctuation by means of Landau theory (Mukherjee 1998a) and the
epsilon expansion method (Vause and Sak 1978, Vigmanet al 1976, Mukherjee 1998b).
The values of the critical exponents for the five components of the order parameter (n = 5)
at d = 3, ε = 1, in the vicinity of this point, are obtained asβ ≈ 0.38, ν ≈ 0.64, γ ≈ 1.27,
η ≈ 0 andα ≈ 0.04. However, these results are far from the experimental results. Trimper
(1987) studied the NI transition in 2+ ε dimensions. Applying the procedure in 2+ ε
dimensions he showed that the phase transition remains second order with a ‘transition
temperature’ proportional toε. The numerical calculation (Mukherjee and Saha 1997) of
the critical exponents of the NI transition also agrees well with the best epsilon expansion
results.

In some very recent work (Mukherjeeet al 1994, Mukherjee and Saha 1995) we used
the RG technique to calculateTNI − T ? for the NI transition. The model free energy of the
LdeG form can be written as

F =
∫

ddx

[
1

4
(AQ2

ij +∇kQij ∇kQij )− BQijQjkQki + C(QijQij )
2−HijQij

]
. (27)
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Here ddx indicates a functional integral ind dimensions over the tensor fieldQ = Q(x).
The external fieldHij is set to the uniaxial form

H11 = H H22 = H33 = −H
2
.

The model (27) was studied extensively by Priest and Lubensky (1976) using theε (=4−d)
expansion method. This method relies on the fact that the MF approximation is exact for
d > 4. It is a perturbation expansion about the solution ford = 4. The fixed point of the
RG corresponds to a second-order phase transition withB = 0. The cubic coupling was
found to be a ‘relevant’ term, soB was treated as a perturbation. The scaling form of the
equation of state in the second order of the epsilon expansion is obtained (Mukherjeeet al
1994) as

H

Qδ
+ B

Qω
= f (x). (28)

The result for

f (x) = 1+ x + εf1(x)+ ε2f2(x) (29)

wherex = t/Q1/β is

δ = 3+ ε ω = 1+ 7ε

13
β = 1

2
− 3ε

26
. (30)

The quantityt is the reduced temperaturet = (T − T ?)/T ?. The quantityt is also the
temperature at which the second-order phase transition would take place ifB were zero.
Therefore,T ? retains its original significance as the temperature at which the light scattering
intensity would diverge if there were no cubic coupling and hence no first-order transition.

From general thermodynamic arguments, we know thatH = −∂F/∂Q. The free
energy may therefore be found by integrating the equation of state with respect toQ. The
conditions that the free energies of the isotropic and nematic states must be equal and that
the free energy must be a local minimum with respect toQ can be expressed as∫ Q

0
H(Q′) dQ′ = 0 (31)

H(Q) = 0. (32)

For fixedB, these equations are to be solved forQ = QNI and t = tNI . The resulting
value of TNI is then expressed astNI = (TNI − T ?)/T ?. This requires a numerical
solution of equations (31) and (32) as a function ofB by putting in the experimental
valueQNI = 0.4. One obtains the valueTNI − T ? = 7.4699 K. The major advantage
of this method over the earlier methods described above is that this method needs only
one experimental datum input—namely the jump in the order parameter atTNI . Although
this result is more encouraging than those from previous work (Priest 1978), it is still far
away from the experimental finding. In order to improve this result we now extend this
calculation near the coexistence curve (Mukherjee and Saha 1995). Here, the coexistence
curve is defined as the region of small external field and below the critical temperature.
NLC are arrangements of approximately parallel molecules whose centres of mass have no
long-range order, like ordinary liquids. Interactions between the molecules are invariant
under simultaneous rotation of the axis of the molecules about their centre of mass. The
director fluctuations correspond to the dynamical mode which is critical for all temperatures
in the nematic phase. This has been tested both experimentally and theoretically.

Considering the uniaxial system with a continuous symmetry, there exist massless
modes: Goldstone bosons at all temperaturesT < TC (the critical temperature) when
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the external fieldH is taken to zero, leaving a spontaneously broken symmetry. Because
of these Goldstone modes, the limitH → 0 can be thought of as a critical point for all
T < Tc. In other words the transverse susceptibility becomes infinite whenH → 0. The
scaling form of the equation of state near the coexistence curve is obtained (Mukherjee and
Saha 1995) as

H

Qδ
+ B

Qω
= x + 1+ ε

26
[4 ln(x + 1)+ 3+ 9 ln 2− 9 ln 3](x + 1)

+ ε2

676

[
−10 ln2(x + 1)+

(
72 ln 2− 36 ln 3+ 1424

13

)
ln(x + 1)

]
(x + 1).

(33)

Again applying the same thermodynamic conditions (31) and (32), the improved value
of TNI − T ? is obtained near the coexistence curve (Mukherjee and Saha 1995) as
TNI − T ? = 3 K. The closeness of this result to the observed valueTNI − T ? = 1 K
supports the idea that a RG calculation can lead to the resolution of theTNI − T ? puzzle.
This supports the view that the discrepancies between the usual analysis of the model and
the experimental results are due to the MF calculation and not due to the model itself.

5. Conclusions

The low values of(TNI − T ?)/TNI and (Q? − QNI )/QNI pose a long-standing puzzle,
despite numerous theories of the NI transition having been advanced. Furthermore, the very
nature of the critical behaviour nearTNI is not properly understood. We have consistently
and semi-quantitatively succeeded in explaining these puzzling aspects. The low value of
TNI − T ? near the hypothetical coexistence curve along with exponentsφ = 0.5± 0.03 of
the dielectric permittivity suggest fluid-like critical behaviour ford = 3 of the NI phase
transition. The consistent values ofTNI − T ? and (Q? − QNI )/QNI along with β- and
1-values suggest a tricritical nature of the NI transition. We also find that not only the
director fluctuations but also the density fluctuation alter the character of the NI transition
and make it very weakly first order. Although we have made some progress in explaining
different phenomena related to the critical properties of the NI transition, in no case have
we found complete numerical agreement between theory and experiments. Realistic results
are expected to come from more realistic Hamiltonians, or perhaps better approximations
than those used here are also needed. In short, for the NI transition we do not have the
final word as yet. We hope that the present analysis will encourage researchers to take a
fresh look at this old but still unsolved problem.
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